## **Project presentation MaLiSu**

(Nanomaterials for future generation Lithium Sulphur batteries)

13.09.2012, Dr. H. Althues

















## **Project presentation MaLiSu**

#### **Overview**

- Placement in the electromobility+ program
- Challenges in next generation battery development
- MaLiSu project
  - Main objectives
  - Workplan
  - Partners and their role
- Summary



## Placement in the electromobility+ program

#### **Key dimension addressed:**

#### **Technology based Innovation**

- Energy storage and management
- Explorative works on future generation batteries. Role of nano-materials.

#### Importance of Explorative works on future generation batteries

- Battery performance and costs are bottlenecks for electromobility
- Opportunity to close the knowledge gap to asian competitors for future generation batteries



#### **Requirements on next generation** batteries for electromobility

- Enhancement of
  - **Energy**-, power density
  - Safety
  - Life time
  - Costs



Energy density limits the autonomic driving distance and is the bottleneck to broad replacement of combustion engines



#### **Properties of Li-Sulfur chemistry**

- High potential for high specific energies (> 400 Wh/kg)
- Large challenges in material development to overcome:
  - Low conductivity / utilization of sulfur
  - Shuttle mechanism of soluble polysulfide intermediates
  - Anode (Li-metal) instability

Scheme of Li-S - cell







#### **Recent developments in material research for Li-S-batteries**

- Nanostructured carbons may contact and stabilize S-species
- Polymer electrolytes may act as barrier for polysulfide dissolution



CMK-3 / sulfur / PEG nanocomposite for S-cathodes



NATURE MATERIALS | VOL 8 | JUNE 2009 | www.nature.com/naturematerials







## MaLiSu project – Objectives and Workplan



## Pore design for cathode materials



#### **Role of partner TU Dresden**

Synthesis of nanostructured carbons with specific pore design to match the requirements for cathodes

- micropous carbons (1-2 nm)
- mesoporous carbons (2-50 nm)
- hierarchical structured porous carbons
- → maximizing sulfur utilization
- → enhancing polysulfide retention





## Industrially processed carbons for cathodes



#### **Role of partner SGL**

- Large scale synthesis of nanostructured carbons
  - Tailoring of pore size distribution and variation of surface area
  - Selection of scalable processes and processing of porous material in gram-scale up to kg-scale
  - Evaluation of industrial feasibility and cost potential for different processes





## Solvent-free electrode processing



#### **Role of partner Fraunhofer IWS**

- S/C Nanocomposite preparation
- Development of cost-efficient electrode processing
  - solvent-free processes
  - stable, high capacity cathodes
- Characterization
  - Cathode performance in battery test cells





Freestanding, flexible electrode with 5 % binder







## **Polymer electrolytes**



#### **Role of partner Uppsala University**

- Development of polymer electrolytes
  - Polymer electrolyte formulation
  - Composite (gel) electrolyte formulation
  - Polymer electrolyte characterization

# Test cell

# **Example for polymer electrolyte formulations:**

$$H_2N$$
 $H_3C$ 
 $O$ 
 $X$ 
 $CH_3$ 
 $H_2N$ 
 $(x+y+z) \approx 50$ 

$$H_2C = \underset{H}{\overset{O}{=}} \underset{C}{\overset{O}{=}} \underset{C}{\overset{O}{=}} \underset{C}{\overset{O}{=}} \underset{C}{\overset{C}{=}} \underset{C}{\overset{C}{\overset{C}{=}} \underset{C}{\overset{C}{=}} \underset{$$

+ LiTFSI salt

S. Tan, S. Walus, J. Hilborn, T. Gustafsson, D. Brandell, *Electrochem. Commun.*, 12 (2010) 1498.

## **Cell manufacturing**



#### **Role of partner Varta Micro Innovation**

- Cell manufacturing / prototyping
  - Electrode fabrication on prototype level
  - Fabrication of demonstrator cells
  - Evaluation of demonstrator cells





#### First results

#### **Performance of first MaLiSu cathodes:**

- high sulfur utilization / specific capacity
  - 4 x higher than Li-Ion intercalation cathodes
- stable cycling (> 100 cycles)
- high coulomb efficiency



## **Cycling tests:**



Electromobility +



### Summary

#### MaLiSu project

- Main project objectives are material, process and cell development for next generation (high energy) batteries
- Consortium involves basic and applied research institutions as well as industrial partners to ensure a fast transfer of results to exploitation
- Partners are open to cross-cutting cooperation and inter-project exchange within the electromobility+ program

#### **Contact:**

Dr. Holger Althues

Fraunhofer Institute for Material and Beam Technology IWS

Winterbergstr. 28, 01277 Dresden

Telefon: +49 351 83391-3476 Telefax: +49 351 83391-3440

Holger.Althues@iws.fraunhofer.de

http://www.iws.fraunhofer.de









